Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 2299, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880887

RESUMO

The original version of this Article omitted an affiliation of Xiewen Wen: 'College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China'. This has been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 9(1): 1859, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29749373

RESUMO

Phase transitions of electron-hole pairs on semiconductor/conductor interfaces determine fundamental properties of optoelectronics. To investigate interfacial dynamical transitions of charged quasiparticles, however, remains a grand challenge. By employing ultrafast mid-infrared microspectroscopic probes to detect excitonic internal quantum transitions and two-dimensional atomic device fabrications, we are able to directly monitor the interplay between free carriers and insulating interlayer excitons between two atomic layers. Our observations reveal unexpected ultrafast formation of tightly bound interlayer excitons between conducting graphene and semiconducting MoSe2. The result suggests carriers in the doped graphene are no longer massless, and an effective mass as small as one percent of free electron mass is sufficient to confine carriers within a 2D hetero space with energy 10 times larger than the room-temperature thermal energy. The interlayer excitons arise within 1 ps. Their formation effectively blocks charge recombination and improves charge separation efficiency for more than one order of magnitude.

3.
Nano Lett ; 18(6): 3494-3501, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29715035

RESUMO

The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.

4.
Proc Natl Acad Sci U S A ; 114(44): 11621-11626, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078373

RESUMO

Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies.

5.
Nano Lett ; 17(4): 2575-2583, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28301725

RESUMO

Aluminum nanostructures support tunable surface plasmon resonances and have become an alternative to gold nanoparticles. Whereas gold is the most-studied plasmonic material, aluminum has the advantage of high earth abundance and hence low cost. In addition to understanding the size and shape tunability of the plasmon resonance, the fundamental relaxation processes in aluminum nanostructures after photoexcitation must be understood to take full advantage of applications such as photocatalysis and photodetection. In this work, we investigate the relaxation following ultrafast pulsed excitation and the launching of acoustic vibrations in individual aluminum nanodisks, using single-particle transient extinction spectroscopy. We find that the transient extinction signal can be assigned to a thermal relaxation of the photoexcited electrons and phonons. The ultrafast heating-induced launching of in-plane acoustic vibrations reveals moderate binding to the glass substrate and is affected by the native aluminum oxide layer. Finally, we compare the behavior of aluminum nanodisks to that of similarly prepared and sized gold nanodisks.

6.
Nat Commun ; 7: 12512, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27539942

RESUMO

Van der Waals heterostructures composed of two-dimensional transition-metal dichalcogenides layers have recently emerged as a new family of materials, with great potential for atomically thin opto-electronic and photovoltaic applications. It is puzzling, however, that the photocurrent is yielded so efficiently in these structures, despite the apparent momentum mismatch between the intralayer/interlayer excitons during the charge transfer, as well as the tightly bound nature of the excitons in 2D geometry. Using the energy-state-resolved ultrafast visible/infrared microspectroscopy, we herein obtain unambiguous experimental evidence of the charge transfer intermediate state with excess energy, during the transition from an intralayer exciton to an interlayer exciton at the interface of a WS2/MoS2 heterostructure, and free carriers moving across the interface much faster than recombining into the intralayer excitons. The observations therefore explain how the remarkable charge transfer rate and photocurrent generation are achieved even with the aforementioned momentum mismatch and excitonic localization in 2D heterostructures and devices.

7.
ACS Nano ; 9(12): 11690-8, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26530638

RESUMO

We report the assembly of gold nanoclusters by the nonthiolate ligand diglyme into discrete and dynamic assemblies. To understand this surprising phenomenon, the assembly of Au20(SC2H4Ph)15-diglyme into Au20(SC2H4Ph)15-diglyme-Au20(SC2H4Ph)15 is explored in detail. The assembly is examined by high-angle annular dark field scanning transmission electron microscopy, size exclusion chromatography, mass spectrometry, IR spectroscopy, and calorimetry. We establish a dissociation constant for dimer to monomer conversion of 20.4 µM. Theoretical models validated by transient absorption spectroscopy predict a low-spin monomer and a high-spin dimer, with assembly enabled through weak diglyme oxygen-gold interactions. Close spatial coupling allows electron delocalization between the nanoparticle cores. The resulting assemblies thus possess optical and electronic properties that emerge as a result of assembly.

8.
Nanoscale ; 7(13): 5884-91, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25761249

RESUMO

Charge carrier relaxation dynamics of electronically excited CdSe and CdSe/CdS core/shell nanocrystals (NCs) were studied using femtosecond time-resolved transient absorption spectroscopy, employing both visible and near-infrared (NIR) probe laser pulses. Following 400 nm excitation, the combination of visible and NIR laser probe pulses were used to determine the influence of surface passivation on electronic relaxation dynamics for nanocrystals overcoated with either organic ligands or inorganic semiconductors. In particular, low-energy NIR photons were used to isolate transient absorption signals due to either electron and hole intraband transitions. Four relaxation components were detected for CdSe NCs passivated by organic molecules: (1) picosecond hole relaxation; (2) electron deep trapping; (3) electron surface trapping; and (4) exciton radiative recombination. Based on TA data collected over a broad energy range, electron deep trapping at Se(2-) sites was suppressed for CdSe NCs passivated by inorganic (CdS) semiconducting materials. By comparing the time-dependent transient absorption data of a series of CdSe/CdS NCs with different shell thicknesses, evidence for the transition from Type-I to quasi Type-II NCs was obtained. These data illustrate the sensitivity of femtosecond time-resolved transient absorption measurements carried out over visible and near infrared probe energies for determining the influence of nanocrystal structure on electronic relaxation dynamics.

9.
J Phys Chem A ; 118(45): 10611-21, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25226506

RESUMO

Temperature-dependent photoluminescence of structurally precise Au25(SC8H9)18 and Au38(SC12H25)24 monolayer-protected cluster (MPC) nanoparticles were studied using energy-resolved, intensity-integrated, and time-resolved spectroscopy. Measurements were carried out at sample temperatures spanning the range from 4.5 to 200 K following electronic excitation using 3.1 eV pulsed lasers. The integrated PL intensity for Au25(SC8H9)18 increased sharply by 70% as the sample temperature was increased from 4.5 to 45 K. The PL intensity was statistically invariant for temperatures between 45 and 65 K but was quenched when the sample temperature was raised above 65 K. For both MPC samples, the global PL emission included several components. Each PL component exhibited an increase in emission energy when the sample temperature was increased from 4.5 to 40 K. This unexpected behavior may imply that MPCs in the 1 nm domain have negative expansion coefficients. Quantitative analysis of PL emission energies and peak widths obtained at sample temperatures greater than 45 K indicated MPC nonradiative relaxation dynamics are mediated by coupling to low-frequency vibrations associated with the ligand shell that passivated the nanoclusters, which accounted for the low emission yields at high sample temperatures. Contributions from two different vibrational modes were identified: Au(I)-S stretching (200 cm(-1)) and Au(0)-Au(I) stretching (90 cm(-1)). Analysis of each PL component revealed that the magnitude of electronic-vibration coupling was state-specific, and consistently larger for the high-energy portions of the PL spectra. The total integrated PL intensity of the Au25(SC8H9)18 MPC was correlated to the relative branching ratios of the emission components, which confirmed decreased emission for recombination channels associated with strong electron-vibration coupling and high emission yields for low emission energies at low temperature. The efficient low-energy emission was attributed to a charge-transfer PL transition. This conclusion was reached based on the strong correlation between temperature-dependent intensity-integrated and time-resolved emission measurements that revealed an ∼3.5-5.5 meV activation barrier to nonradiative decay. These findings suggest that nanoscale structure and composition can be modified to tailor the optical and mechanical properties and electronic relaxation dynamics of MPC nanostructures.

10.
Phys Chem Chem Phys ; 16(11): 5088-92, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24504046

RESUMO

A bifluorophoric molecule (1) capable of intramolecular Förster Resonance Energy Transfer (FRET) is reported. The emission intensity of the FRET acceptor in 1 depends on the molar absorptivity of the donor, which is a function of zinc(II) complexation. The FRET dynamics of [Zn(1)](ClO4)2 is characterized by femtosecond time-resolved transient absorption spectroscopy. The solvent-mediated relaxation of the charge-transfer (CT) state of the isolated donor and the FRET process of the donor­acceptor conjugate are on similar time scales (40­50 ps in CH3CN), but distinguishable by the opposite solvent polarity dependency. As the solvent polarity increases, the efficiency of Columbic-based FRET is reduced, whereas CT relaxation is accelerated. In addition to revealing a method to distinguish CT and FRET dynamics, this work provides a photophysical foundation for developing indicators based on the FRET strategy.

11.
J Am Chem Soc ; 135(48): 18222-8, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24195472

RESUMO

Electronic energy relaxation of Au144(SR)60(q) ligand-protected nanoclusters, where SR = SC6H13 and q = -1, 0, +1, and +2, was examined using femtosecond time-resolved transient absorption spectroscopy. The observed differential transient spectra contained three distinct components: (1) transient bleaches at 525 and 600 nm, (2) broad visible excited-state absorption (ESA), and (3) stimulated emission (SE) at 670 nm. The bleach recovery kinetics depended upon the excitation pulse energy and were thus attributed to electron-phonon coupling typical of metallic nanostructures. The prominent bleach at 525 nm was assigned to a core-localized plasmon resonance (CLPR). ESA decay kinetics were oxidation-state dependent and could be described using a metal-sphere charging model. The dynamics, emission energy, and intensity of the SE peak exhibited dielectric-dependent responses indicative of Superatom charge transfer states. On the basis of these data, the Au144(SR)60 system is the smallest-known nanocluster to exhibit quantifiable electron dynamics and optical properties characteristic of metals.


Assuntos
Nanoestruturas/química , Compostos Organoáuricos/química , Elétrons , Modelos Moleculares , Análise Espectral
12.
J Am Chem Soc ; 134(13): 6006-17, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22394283

RESUMO

We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine-isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from acidic to alkaline.


Assuntos
Dopamina/química , Medições Luminescentes , Pontos Quânticos , Eletroquímica , Concentração de Íons de Hidrogênio , Fenômenos Ópticos , Oxirredução , Oxigênio/química , Polietilenoglicóis/química , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...